
1052 Elwell Court, Palo Alto, CA 94303 Tel: 800.683.5943 www.zfmicro.com

ZFAN–12
Booting User Software from Flash

Often, HW/SW developers design solutions using a single Flash device as the source of the
BIOS, OS and/or application. This document focuses on booting Linux from a single Flash chip
on the ZFx86 Integrated Development System (IDS). Apply this theory to booting other operating
systems such as WindRiver’s VxWorks or other user-written special application programs.

This BIOS-independent approach utilizes ZFx86 specific features built into the latest ZFx86
Phoenix BIOS. Download the latest Phoenix BIOS from the ZF Micro Devices website:

http://www.zfmicro.com

Using Option-ROMs
ZFx86’s Flash-software booting approach relies on the option-ROM scan system, a feature
found in all AT-compatible PCs. The common ISA video card BIOS is considered an
option-ROM; although, it is a special case which gets executed in the very early stage of the
BIOS Power On Self Test (POST) sequence. Other option-ROM examples are: ROM-BASIC
used on early ATs, and all firmware on PCI or ISA extension boards (for example, network
interface controllers, or SCSI controllers).

During the POST sequence, the BIOS performs a so-called ROM-scan sequence:

• The BIOS looks at the beginning of every 2kbyte block in the address region C8000h
through F0000h to find a “55 AA” signature.

• When it finds the “55 AA” signature, the next byte determines the option-ROM size in
512-byte increments.

• For detecting corruption, the sum of all option-ROM bytes must equal 100h. Usually
achieved by setting the last byte to: 100h minus the sum of all other option-ROM bytes.

• When the BIOS validates the option-ROM is correct, it calls the routine starting at
offset 03h.

The option-ROM routine completes various tasks; typically, it initializes the hardware to some
known state and hooks some interrupt vectors used later by other OS services or user programs.
ZFx86 uses the option-ROM code to boot Linux from Flash. We call this routine the Linux
Loader (LL).

This process works for all possible HW configurations where the option-ROM and the BIOS may
reside in the same device or in different chips on the motherboard. You must correctly set or
route the ZFx86’s Chip Select signals and the custom BIOS settings to the chip region where the
option-ROM resides, and address the option-ROM during the POST sequence.

See the ZF Micro Device’s website for compressed LinuxLoaderOptionROM.zip and
VxWorksOptionROM.zip files.
P/N 9150-0012-00 Rev B 1 © ZF Micro Devices, Inc

http://www.zfmicro.com

Booting Initalization Sequence
Booting Initalization Sequence
The following identifies the startup sequence the loader completes:

Initialize the CPU and cache

Initialize Lambda North Brigde

Initialize the South Bridge

Program the SuperIO

Size and initialize the system memory

Copy the loader to shadow RAM

Set up the stack and interrupt vectors

Initialize the Serial Port (9600 baud, 8 bit, no parity, handshake set to none)

Perform PCI bus scan and allocate resources for the PCI devices

Set up interrupt controllers and system timer chip

Initialize system Real Time Clock

Set up Video BIOS if present (ISA bus card given priority over PCI)

Output the amount of memory detected in system and the PCI device list

Open Flash window with following parameters:

Start address in Flash = 1B0000h

System Base Address = D0000h

Size = 2000h

Perform Option Rom scan from D0000h to EFFFFh

Execute Option Rom image if found, otherwise bring the system to a halt.

The Linux Loader Operation
The Linux Loader (LL) copies the Linux kernel from a Flash address to a RAM address that
matches the address used when Linux starts from the Hard Disk.

Also, depending on the default compiled options, the kernel identifies whether to mount its root
file system from a RAM disk or from a hard disk partition. Initally, the Linux Loader stores the
RAM disk root file system in Flash as a compressed “initrd” image (initialize RAM-disk) and
copies it to the end of the available RAM. The initrd image begins with a 4-byte header value that
indicates how many bytes to copy from Flash-to-RAM.

Download the “Booting Linux from Flash” Application Note (P/N 9150-0017-00) for detailed
instructions on using the Linux Loader, the ZFlash Linux Loader.zip file containing a sample initrd
image and a Linux File System. See the ZF Micro Devices website:
http://www.zfmicro.com.
P/N 9150-0012-00 Rev B 2

http://www.zfmicro.com

The Linux Loader Operation
The following procedure describes the internal working of the Linux Loader. Use these same
concepts to launch other operating systems.

1. Invoke the Linux Loader using the special option-ROM scan routine, which gains control
just before normal boot process and scans the memory window mem_cs0 settings
defined in PhoenixBIOS Setup Utility > Advanced > Advanced Chipset Control >
ISA Memory Chip Select Setup menu. See Figure 1.

Figure 1. ISA Memory Chip Select Setup Menu

Use the memory window settings to map a specific region from Flash memory to the
desired address below the 1Mb boundary (by default, the chip select setting maps
part of the BIOS from the end of 2Mb Flash device to address E0000h).

Set the mem_cs0 to any needed value, because at the time point when those settings
are required, the BIOS is already shadowed and nolonger executing from the Flash
device.

2. As a first step after execution, the LL relocates itself to the main working memory address
9B00:0000. Because in a later processing step, the LL redefines the mem_cs0 memory
window, and if at this point the code is still working from the Flash device (that is, mapped
to a memory window below 1Mb), the original mem_cs0 value disappears from the initial
memory window and a total system crash occurs.

3. The LL initializes the Serial Port to allow for diagnostic messages.

4. Then, the LL waits 3 seconds to allow for user input.

• If the ESC key is pressed, the loader quits, and the BIOS’ special option-ROM scan
routine regains control.

• If the option-ROM scan routine cannot find any other valid option-ROMs in the defined
search area (defined by mem_cs0 settings), a normal disk boot occurs.

5. After the 3 seconds elapses without the ESC key pressed, the loading sequence starts.

a. The kernel saves the original mem_cs0 Flash window settings and enlarges the Flash
window to 16MB using the ZFx86’s chip select programming features. This Flash
P/N 9150-0012-00 Rev B 3

The Linux Loader Operation
window is visible for all available memory addresses which are not claimed by the
memory controller (that is, addresses reserved for RAM) or PCI devices due to the fact
that the ISA bus has a lower priority than all the other chip devices (for example,
memory controller or PCI controller).

b. Therefore, at the end of the DRAM memory map, the mapped Flash content is visable
over the entire upper memory space at every 16MByte boundary.

• For instance, the LL repeats the entire 16MByte Flash contents in the address range
10000000h through 10FFFFFFh (also at 11000000h through 11FFFFFFh,
12000000h through 12FFFFFFh, and so on).

Note:To access the entire upper memory space, enable the A20M# line.

6. Before the LL copies large amounts of data from the extended memory to the lower RAM,
it must account for the processor’s protected mode operation.

a. First the LL initializes the Global Descriptor Table (GDT) so that the data segment size
increases from the normal 64KB to 4GB.

b. Then, it loads this GDT data.

c. Switchs the processor to protected mode.

d. Sets data segment DS and extra segment ES selectors with the previously defined
4GB data range GDT entries.

e. Then switchs the processor back to real mode again.

This allows you to access the entire 4GB memory space in real mode as long as the
DS and ES registers are not overwritten.

7. Once the LL access the full memory space, it checks for the Linux kernel’s signature at
Flash offset 202h (in our example, visible at memory address 10000202h).

• If the signature is not found, the LL increments the search address with a 16MB value
and checks again for a signature.

• If the kernel signature is not found after 10 checks, the LL restores the original memory
window settings, prints out the “Linux kernel setup signature not found” message and
returns.

Note:The LL searches the signature addresses at 10000202h,11000202h, 12000202h,
and so on,

8. The kernel header data structure contains bootstrap code, and kernel setup code. The LL
copies this code from the previous address (in our example, 10000000h) to 90000h in
low memory.

9. The LL reads the kernel’s loading address from the header and then copies the kernel
itself to the correct loading address in RAM.

• In a normal sized kernel, it loads at address 10000h.

• In a large sized kernel (made using “make bzImage”), it loads at the high memory
address 100000h.

10. In order to load the initrd image to RAM, the LL requests the detected “top of memory”
P/N 9150-0012-00 Rev B 4

The Linux Loader Operation
system address from the ZFx86 South Bridge. The Linux Loader requests that the initrd
image start at Flash offset 80000h.

a. Before the initrd gets copied, the LL checks for its presence by reading the initrd size
value from Flash offset 80000h (memory address 10080000h, 11080000h, and so on).

b. If the size value is 0 or 0FFFFFFFFh, the LL skips copying the initrd; otherwise, it
copies the initrd image to the end of the detected RAM without the 4-byte length
header.

11. The LL writes the initrd size and start address to the kernel setup parameter block which
resides in memory location starting at 90200h. If initrd was not found, the LL zeros out
these values.

12. The LL now closes the previously created 16MB Flash window and restores the original
mem_cs0 window.

13. To boot the kernel normally, the LL updates the boot sector data area at 90000h with the
values needed to configure the kernel. For example, those values might be that there
are 4 setup sectors, that the root device is read-only, that the ram disk is 0, that the swap
size is 0, and so on, also that the system size, the video mode, and the root device name
are set, and that the stack is set up to the kernel setup code’s stack area.

• The root device name is based on the compiled-in root-device id value, where
100h=ram0, 301h=hda1, 302h=hda2, 303h=hda3, 304h=hda4, 0=disabled.

• If the root device id is set to 100h, the root device will be the one contained in
compressed form in our initrd image in Flash.

• If root device id is set to 301h, then the loader mounts the root device from the first
hard disk partition or /dev/hda1.

14. The final action to start Linux is a Far Jump to the beginning of the kernel setup code.

The kernel boot messages begin appearing on the screen or COM-port, and the root
file system mounts from RAM-disk or the hard disk partition depending on the
compiled-in Root_Device variable.

15. The Linux login prompt displays.
P/N 9150-0012-00 Rev B 5

Linux Loader Flowchart
Linux Loader Flowchart
Figure 2 charts the Linux Loader’s logic flow.

Figure 2. The Linux Loader Flow Chart

Linux Loader invoked by ROM-scan

Copies itself from Flash to 9B00:0000h

Enable A20, switch to Protected Mode, set DS & ES selectors
for 4GB address range, and switch back to Real Mode

Initialize Serial Port, print message, and wait for 3 seconds for user input

ESC Yes

Yes

No

Timeout
over

Save previous mem_cs0 settings and resize window to 16MB

Increment search
address by 16MB

Yes

No

Print “Signature not
found” message

Zero out initrd size and start
parameters in kernel setup

parameter block

Return to ROM-scan
routine

10 checks
passed?

Signature
found?

initrd size OK

Linux Boot
messages appear

on screen or at
COM port

Pressed?

Verify kernel signature at Flash offset 202h (visable at every 16MB
boundary above physical RAM addresses or PCI memory addresses)

Return to ROM-scan
routine

Restore original
mem_cs0 value

Read kernel setup code from header data structure, and copy code
from previous location to low memery location 90000h

Read the “top of memory” system address from South Bridge registers

Read the initrd size value from Flash offset 80000h

Is initrd
size 0 or

FFFFFFFFh?

Restore original mem_cs0, and update boot sector data area at 90000h with kernel
configuration values, system size, video mode, root device name, and stack setup info.

Save initrd size and start parameters in kernel setup parameter block

Linux launches. The kernel mounts the root File System from the
initrd image or from hard disk, depending on Root_Device variable

Read kernel loading address from header data structure, and copy the kernel
to the correct RAM loading address (10000h normal kernel 100000 large kernel)

Yes
P/N 9150-0012-00 Rev B 6

The Flash layout
The Flash layout
The Flash layout depends on the actual system hardware set up and the amout of available
Flash memory. The following items are required:

• System BIOS or special initialization code (ZFx86 Phoenix BIOS) which supports
option-ROMs

• The Linux Loader image converted to option-ROM format with the needed headers and
checksums included

• The Linux kernel – exactly the same file created as the end product of the kernel
compilation

• Optional initrd image (a compressed root File System image that expands as a
RAM-disk). You may omit this otional image if the root File System resides on an
alternate device (for example, IDE, Compact Flash, Disk on Chip, and so on) and mounts
from the alternate device.

For example, your design may contain a large Flash chip such as the 16MByte Intel E28F128
StrataFlash. In this case, organize the Flash memory layout as follows:

Start offset Item
FC0000 Phoenix BIOS 256K
FB8000 Linux Loader
080000 initrd image beginning with 4-byte header, up to address FB7FFF
000000 Linux Kernel, up to address 07FFFFh

Map the Linux Loader to D8000 using the BIOS’ internal memory chip select mapping
mechanism. The ZFx86 Phoenix BIOS allows the creation of up to four memory windows using
chip selects mem_cs0 through mem_cs3. Although, the BIOS uses the mem_cs0 to start from
Flash after reset; the BIOS is then shadowed into RAM thereby allowing us to reprogram
mem_cs0 for other memory windows. During the special option-ROM scan, the Linux Loader
maps to the correct location in RAM, locates it, and executes.

In order to map the Linux Loader to mem_cs0, select the desired place in RAM using the
Phoenix BIOS Setup Utility > Advanced > Advanced chipset Control > ISA Memory Chip Select
Setup menu and set the following values:

Window Size: 1 – sets window size to 8kb
Window Base: D8 – sets window base to D8000h
Window Page: EE0 – sets Flash page register value to

1000000h–D8000h+FB8000h = EE0000h
Window Data Width: 16 or 8 based upon the data path width of the device used in your

design.
P/N 9150-0012-00 Rev B 7

Using the Z-tag Manager
Using the Z-tag Manager
Figure 3 shows the Z-tag Manager Contents window.

Figure 3. Z-tag Manager’s Contents Window Defining Data To Be Flashed

For more detailed instructions, see “Booting Linux From Flash” (P/N 9150-0017-00) document
on the ZF Micro Device website: http://www.zfmicro.com

1. Use the Z-tag Manager configured for Pass Through mode to load the data.

2. Connect the parallel port extension cable to your development host computer.

3. Connect the Z-tag dongle (JP2 pins 2-3 jumpered for PassThrough mode) to the
extension cable and to your target board’s Z-tag connector.

4. Verify that Chip Select 0 is jumpered to your selected target Flash chip.

5. Press the Z-tag Manager’s Write-button and reset the target board to initiate the
download and Flash burning sequence.

The Z-tag Manager operation is documented in the Z-tag Manager manual and in other
reference documents from ZFMicro Devices.

6. To monitor the download progress, connect the serial cable from the target board’s
COM1 port to your development host computer’s COM port. Set the COM port to the
following:

• Speed 9600 baud

• 8 bit, no parity

• Handshake set to none
P/N 9150-0012-00 Rev B 8

http://www.zfmicro.com

Conclusion
Conclusion
Loading and launching Linux from Flash is not a complicated task if a Linux Loader binary is
contained in an option-ROM using a compatible format. You might need several images for
different purposes, for example, for mounting root file system from RAM disk, or for mounting the
root file system from /dev/hda1.

• Use the BIOS or other system initialization code to set up the hardware properly and
detect the amount of memory installed in your system.

• The BIOS or system initialization code then launchs the Linux Loader (or some other
operating system loader which you build using the same general principles) either during
the option-ROM scan or by a direct jump to it.

• In case of a complete Linux system, place both the kernel at offset 0h and the initrd
images at offset 80000h in the Flash.

• The initrd image must contain a 4 byte-long image-length header before the actual image
starts.

• For mounting the root file system from a hard disk, you only need the kernel in the Flash.
Compile the Linux Loader with correctly defined Root_Device id settings.

• Generally, you can modify the current Linux Loader code to match your HW design, and
the images may reside in completely different Flash offsets.
P/N 9150-0012-00 Rev B 9

Appendix A: The Linux Loader Source Code
Appendix A: The Linux Loader Source Code
; ORLL (Option-ROM Linux Loader) v1.00
; Last modified on 18.01.2001

.model tiny

.486p

; Linux root device options:
; 100h=ram0, 301h=hda1, 302h=hda2, 303h=hda3, 304h=hda4, 0=disabled

Root_Deviceequ 301h
Serial_Addrequ 03f8h ; 3F8h = COM1, 2F8h = COM2
Screen_Outputequ 1 ; 1 = Output messages also to the screen

MSG MACRO text
mov si,offset text
call Output
ENDM

PCODE MACRO postcode
mov al,postcode
out 80h,al
ENDM

ZFLWB MACRO register,value8
mov al,register
mov dx,218h
out dx,al
inc dx
mov al,value8
out dx,al
ENDM

ZFLRB MACRO register
mov al,register
mov dx,218h
out dx,al
inc dx
in al,dx
ENDM

ZFLWDW MACRO register,value32
mov al,register
mov dx,218h
out dx,al
inc dx
inc dx
mov eax,value32
out dx,eax
ENDM

ZFLRDW MACRO register
mov al,register
mov dx,218h
out dx,al
inc dx
P/N 9150-0012-00 Rev B 10

Appendix A: The Linux Loader Source Code
inc dx
in eax,dx
ENDM

.code
org 0

Start:

db 55h,0aah ; Extension ROM signature,
db 3 ; and length in 512-byte pages

PCODE 070h
mov ax,cs
mov ds,ax
jmp Skip_GdtArea

; Global Descriptor Table

org 10h ; For proper alignment

Gdt dd 0,0 ; 1st entry, not used
GdtProtdw 0ffffh,0000h ; 2nd entry

db 0,93h,8fh,0
GdtDescdw $-Gdt ; GDT size
GdtBasedd 0 ; GDT base address

Skip_GdtArea:

; First we move our code out of extension ROM space, so we can open new
; 16Mb wide memory window for strataflash where we locate the kernel and
; initrd images. Since this overrides memory window settings of our extension
; ROM, we need to get out of here.
; Bootsector & linux kernel setup goes to 9000:0000, length 0A00h bytes,
; linux kernel itself goes to 1000:0000, max length 08000h bytes,
; which leaves safe location for us below 1000:0000 or above 9000:0A00,
; so I chose 9200:0000. We don’t have to worry about this if we have big
; kernel which goes above 1Mb.

New_Segequ 9200h

mov ax,New_Seg
mov es,ax
lea si,Start
mov di,si
mov cx,offset Loader_End-Start
cld
rep movsb

db 0eah ; Far jump to Start
dw offset Loader_Start,New_Seg

Loader_Start:

PCODE 71h

; Initialize serial port
P/N 9150-0012-00 Rev B 11

Appendix A: The Linux Loader Source Code
mov dx,Serial_Addr+3
mov al,80h
out dx,al ; Set DLAB
mov dx,Serial_Addr
mov ax,12 ; 12 = 9600 bps
out dx,ax ; Baud rate divisor
mov dx,Serial_Addr+3
mov al,3 ; 3 = 8N1
out dx,al ; Line mode (8N1)
mov dx,Serial_Addr+4
xor al,al
out dx,al ; Clear DTR & RTS
MSG T_Loader_Start ; Output loader startup message

; Here we wait 3 seconds for user input, if ESC key is pressed, loader quits
; with jump to the original Int 19h vector

mov ax,40h
mov es,ax
mov ebx,es:[6ch]
add ebx,55 ; We wait 55 timer ticks, ca 3 seconds

@@:
cmp ebx,es:[6ch]
jl @f
in al,60h ; Check if ESC key has been pressed
cmp al,0
jz @b
cmp al,1
jne @f ; No, go check again have 3 seconds passed yet
MSG T_Cancel

; Exit loader

retf
@@:

MSG T_Start

PCODE 73h

; Save current memory window settings

lea edi,offset MemWinISA24
ZFLRB 5Bh ; ISA 24-bit address calculation
stosb
ZFLRDW 26h ; Window base
stosd
ZFLRDW 2Ah ; Window size
stosd
ZFLRDW 2Eh ; Window page
stosd

; Define 16Mb wide memory window for chip select 0

ZFLWB 5Bh,1 ; Set ISA 24-bit address calculation
ZFLWDW 26h,0 ; Set base address (actual ports 27h and 28h)
ZFLWDW 2Ah,1000000h-1 ; Window size is 16MB (strataflash)
ZFLWDW 2Eh,0 ; Page address
P/N 9150-0012-00 Rev B 12

Appendix A: The Linux Loader Source Code
; Enable A20 line

PCODE 74h

 cli
in al,92h

 jmp$+2
 jmp$+2

or al,2 ; Enable A20 bit
out 92h,al

; Initialize and load GDT

PCODE 75h

sub eax,eax
mov ax,cs
shl eax,4
add eax,offset Gdt
mov cs:GdtBase,eax
lgdt fword ptr cs:GdtDesc

; Switch processor to protected mode

mov eax,cr0
mov ebx,eax
or ax,1 ; Set PE bit
mov cr0,eax ; Enable protected mode
jmp $+2 ; Flush instruction cache
mov ax,(GdtProt-Gdt)
mov ds,ax ; Define selectors for DS

; Switch processor back to real mode

mov cr0,ebx ; Clear PE bit, back to real mode
jmp $+2 ; Flush instruction cache

; Check for Linux kernel setup signature. If we cant find the signature in
; first try, we perform a scan loop on higher addresses just to be sure that
; the address space where we were looking was not claimed by any other device
; with higher priority. This scanning technique is possible because of ISA bus
; being only 24 bits wide and its 16Mb address space gets repeated after every
; 16Mb block through entire 4GB adress space. We start from 10000000h, thats
; above 256Mb, maximum amount of RAM that ZFx86 can be configured with.

PCODE 76h

mov esi,10000000h ; Start address
mov cx,10 ; Number of cycles

@@:
add esi,202h ; Start address + kernel setup signature offset
mov eax,[esi]
cmp eax,053726448h ; Look for ’HdrS’
je SigFound
add esi,01000000h ; Add 16Mb to the address and try again
loop @b
jmp NoSignature ; No signature found, skip the whole thing
P/N 9150-0012-00 Rev B 13

Appendix A: The Linux Loader Source Code
; Now copy kernel setup and bootstrap code

SigFound:

sub esi,202h
mov ebp,esi ; EBP = kernel setup start address

PCODE 77h

add si,1f1h
xor ax,ax
mov al,[esi] ; Get setup sector size
inc al ; Add bootstrap sector
shl ax,9 ; Multiply by 512 for size in bytes
mov bx,ax ; Store value for kernel start address
sub esi,1f1h ; Start address of the kernel setup code
mov edi,90000h ; Destination address
mov cx,ax

@@:
mov eax,ds:[esi]
mov ds:[edi],eax
add esi,4
add edi,4
sub cx,4
jnz @b

; Now copy kernel image

PCODE 78h

mov esi,ebp
add esi,211h
mov al,[esi] ; Kernel boot option
add esi,3
mov edi,[esi] ; Kernel load offset in system memory
sub esi,214h
mov si,bx ; Start address of the kernel image
mov ecx,080000h ; Maximum kernel size to copy
or al,al
jnz @f
shl edi,4 ; Start address of kernel (10000h or 100000h)

@@:
mov eax,[esi]
mov [edi],eax
add esi,4
add edi,4
sub ecx,4
jnz @b

PCODE 79h

; Read top of system memory address from south bridge
; This is specific to the ZFx86 BIOS’es

mov eax,8000904ch ; PCI south-bridge top of system memory register
mov dx,0cf8h
out dx,eax
P/N 9150-0012-00 Rev B 14

Appendix A: The Linux Loader Source Code
mov dx,0cfch
in eax,dx
and al,0f0h ; We have to clear lower 4 bits (SB speciality)
dec eax

; Check for initrd size/presence in flash rom,
; and copy it to the top of system memory

PCODE 7Ah

mov edi,eax
mov esi,ebp
add esi,80000h ; Start address of the initrd image in memory

; window
mov ecx,[esi] ; Get size of the initrd image
cmp ecx,0 ; Skip initrd if size is zero, means it’s

disabled
jz SkipInitrd
cmp ecx,-1 ; Also skip initrd if the memory is pobably
jz SkipInitrd ; not initialized

PCODE 7Bh

add esi,4 ; Skip first 4 bytes of image (initrd size)
neg ecx
add edi,ecx ; Calculate start address of the image in system

memory
neg ecx
xor di,di
mov ebx,edi ; Save start address of the image

@@:
mov eax,[esi]
mov [edi],eax
add esi,4
add edi,4
sub ecx,4
jc @f
jnz @b

@@:
mov esi,ebp
add esi,80000h ; Start address of the initrd image in

; memory window
mov ecx,[esi] ; Get size of the initrd image
jmp @f

SkipInitrd:

PCODE 7Ch

sub ebx,ebx ; Set zeroes if initrd was not found in flash
sub ecx,ecx

; Write start address and size of ramdisk image (initrd) to the kernel setup
; parameters block

@@:
PCODE 7Dh
P/N 9150-0012-00 Rev B 15

Appendix A: The Linux Loader Source Code
mov ax,9020h ; Kernel setup segment
mov ds,ax
mov ds:[24],ebx ; Start address of initrd image
mov ds:[28],ecx ; Initrd image size

; Restore original memory window

ZFLWB 5Bh,0 ; Clear full 24-bit ISA addressing
ZFLWDW 2Eh,0F00000h ; Set page
ZFLWDW 2Ah,10000h-1 ; Window size is 64k
ZFLWDW 26h,0F0000h ; Set base address

; Setup parameters

mov ax,9000h ; Bootsector data area
mov ds,ax
mov byte ptr ds:[1f1h],4 ; Setup sectors
mov word ptr ds:[1f2h],1 ; Root flags (read only)
mov word ptr ds:[1f4h],8000h ; System size
mov word ptr ds:[1f6h],0 ; Swap device
mov word ptr ds:[1f8h],0 ; Ramdisk
mov word ptr ds:[1fah],0f00h ; VGA screen mode
mov word ptr ds:[1fch],Root_Device; Root file system device

; Command line patch

mov ds:[020h],0a33fh
mov ds:[022h],8cc1h

; Root device name

cld
mov si,offset T_Root_Device
mov di,08cc1h
mov ax,ds
mov es,ax ; ES=9000h
mov ax,cs
mov ds,ax ; DS=CS

@@:
lodsb
stosb
or al,al
jne @b

mov ax,9020h ; Kernel setup segment
mov ds,ax

mov byte ptr ds:[16],61h ; Set loader type and version

; Everything is done, now lets jump into kernel setup code

PCODE 7Eh

db 0eah ; Far jump into kernel setup code
dw 0,09020h
P/N 9150-0012-00 Rev B 16

Appendix A: The Linux Loader Source Code
NoSignature:

PCODE 7Fh
MSG T_SigNotFound

; Restore original memory window

lea si,offset MemWinISA24
lodsb
ZFLWB 5Bh,al ; Clear full ISA addressing bit
lodsd
ZFLWDW 2Eh,eax ; Window page
lodsd
ZFLWDW 2Ah,eax ; Window size
lodsd
ZFLWDW 26h,eax ; Window base
retf

;---
;
; Output string from CS:SI ending with zero
;

Output:
mov dx,Serial_Addr+5

@@:
in al,dx
test al,20h
jz @b
mov al,byte ptr cs:[si]
inc si
cmp al,0
jne @f
ret

@@:
sub dx,5
out dx,al

IF Screen_Output EQ 1
mov ah,0eh
int 10h

ENDIF
jmp short Output

MemWinISA24db 0
MemWinBasedd 0
MemWinSizedd 0
MemWinPagedd 0

IF Root_Device EQ 100h
T_Root_Devicedb ’/dev/ram0 ’,0
ENDIF
IF Root_Device EQ 301h
T_Root_Devicedb ’/dev/hda1 ’,0
ENDIF
IF Root_Device EQ 302h
T_Root_Devicedb ’/dev/hda2 ’,0
ENDIF
P/N 9150-0012-00 Rev B 17

Appendix A: The Linux Loader Source Code
IF Root_Device EQ 303h
T_Root_Devicedb ’/dev/hda3 ’,0
ENDIF
IF Root_Device EQ 304h
T_Root_Devicedb ’/dev/hda4 ’,0
ENDIF
IF Root_Device EQ 0
T_Root_Devicedb 0
ENDIF

T_Loader_Startdb 13,10,’Option-ROM Linux loader 1.00, press ESC to cancel...’,0
T_Start db ’starting.’,13,10,10,0
T_Canceldb ’cancel.’,13,10,0
T_SigNotFounddb ’Linux kernel setup signature not found.’,13,10,10,0

Loader_End:
end Start
P/N 9150-0012-00 Rev B 18

	Booting User Software from Flash
	Using Option-ROMs
	Booting Initalization Sequence
	The Linux Loader Operation
	Linux Loader Flowchart
	The Flash layout
	Using the Z-tag Manager
	Conclusion
	Appendix A: The Linux Loader Source Code

