
FailSafe

- 1 -

FailSafe System Recovery

What if your system contains compromised memory devices, questionable Flash integrity, a
possible hard disk failure and will not boot -- or your system experiences a total operational
failure? What if you need to determine the system’s current status and update or reinstall all
system firmware without replacing any hardware or dispatching a technician to reconfigure or
reinstall software? Can it be done? Yes! ZF Micro Devices’ ZFx86 System-On-a-Chip contains
the primitives to implement a robust process to check and recover your system.

The patented ZF Micro Solutions FailSafe mechanism is system control at the root, and the
ZFx86 by itself can function as the root. This paper describes the ZFx86 FailSafe elements and
their operation.

ROOT SYSTEM CONTROL

The FailSafe system’s most basic requirement is the ability to control a minimal hardware
environment at the root level. Using the ZFx86 with its unique internal functionality makes this
possible as the ZFx86 is able to function as the minimal hardware by itself. A few term
definitions are necessary to understand the ZFx86 FailSafe sub-system: Pre-Boot Integrity, Fault
Detection/Recovery, and the use of Minimal Required Resources.

Pre-Boot Integrity

Before the operating system or an application boots, the system confirms its hardware
integrity and validates stored software. Beginning with the BIOS, the ZFx86 validates pre-
boot integrity before initiating the full system boot operation and before initializing the
system resources. During this process, the ZFx86 uses minimal system resources as
everything is assumed suspect until validated.

Operational Fault Detection/Recovery

Once the full system becomes operational, the designed fault detection sub-system is also
operational. The fault detection mechanisms detect abnormal system function and then
initiate an analysis and recovery mechanism when necessary.

Minimal Required Resources

The key to high quality FailSafe is the system’s ability to remain under control with
hardware resources held to an absolute minimum. Because we recognize these minimum
hardware resources as single points of failure, they directly affect system reliability. The
fewer points required, the more robust the design. All systems contain single failure points,
and to increase fault resistance, the number of failure points must be reduced causing the
probability of system survival to increase. The objective in robust system design is therefore
to minimize single points of failure and limit them to elements having an extremely low
mean time between failures.

FailSafe

- 2 -

ZFX86 UNIQUE ROOT LEVEL CONTROL

The ZFx86 contains integral features that provide designers with system survivability while still
providing complete system control. The ZFx86 addresses the states of pre-boot and full-up
operation, because we recognize their potential as single points of failure.

Pre-Boot

The ZFx86 pre-boot function contains three elements: BUR in ROM, BUR Monitor, and
SEEPROM Extensions. They allow control of and communications with the ZFx86 without
using system resources. Through these, you verify sub-system integrity before a normal
boot, or perform post-failure diagnosis without depending on them for operation. Figure 1
shows a generic pre-boot flow:

BUR in ROM

The ZFx86 contains a Boot Update Rom (BUR) mask programmed in ROM. This code
executes at a system reset if an external pin is grounded (either through a jumper setting
or when hard wired in the design). This code automatically validates whether or not a
serial memory device is connected to the Z-TAG port. The designer defines the serial
memory device’s contents. If the ZFx86 sees the serial memory device, it then
downloads the contents through the Z-TAG port and executes the instructions. During
this process, the system’s memory is not required.

BUR Monitor

When creating code in the serial memory device mentioned above, the designer can
include a command that starts the ZFiX console. This presents a command line
interpreter interface to the host machine or a terminal connected to the ZFx86’s serial

FailSafe

- 3 -

port (COM1). The designer can use this feature to examine and modify the Internal
registers, the ISA space (Flash, etc.), and I/O ports using this remote console mode.

BUR Extensions

As described above, the designer programs BUR extensions into the serial memory
device, typically a Serial Electrically Erasable PROM (SEEPROM). This device is
protected from modification since the Z-TAG port is input only and not capable of
sending information to the serial memory. The code stored in the SEEPROM executes
the checksum compare shown in the Pre-Boot diagram.

Fault Detection/Recovery

Once a system boots and is in operation, the next FailSafe control layer becomes available.
The ZFx86 contains a programmable interval, dual watchdog timer the output of which can
be steered depending on the design objectives. In addition, it contains two scratch registers
that make it possible to store and retrieve the ZFx86’s state at a later time, even after a
system reset. Figure 2 shows a generic operation flow:

FailSafe

- 4 -

Dual Watchdog Timer

This diagram shows the first Fault Detection/Recovery element, the Watchdog Timer:

The Watchdog Timer steers the first counter’s output to one of four outputs. Each output
triggers a different action: the SMI and NMI interrupts depend upon memory being
operational with viable interrupt vectors and handling routines. A hard reset might be a
secondary course of action if it has been determined that the memory has been
compromised. Depending on system requirements, you can program the solutions to
these varying scenarios using the SEEPROM (BUR extension) or a higher level
application.

Scratch Registers

The scratch register set is the second key element in Fault Detection/Recovery. The two
register types behave differently during reset. The first set contains ten persistent
registers that survive everything except a power off/on cycle (they are cleared on power-
up). The second set includes ten temporary registers that are cleared on power-up or a
hard reset.

By accessing these registers, the BUR extensions determine which of the following the
system experienced:

• A power-up reset – all registers are cleared

• A hard reset – persistent registers maintain their value, but the temporary registers
are cleared

• A soft reset – all registers retain their values

FailSafe

- 5 -

In addition to determining the nature of the reset, the ZFx86 sets a flag that identifies if
the watchdog timer caused the reset. Thus, among the two register types and this flag,
the BUR extension code can determine the state that existed immediately preceding a
normal power-up, or a fault induced reset. These registers also define whether FailSafe is
armed, and then after FailSafe determines the cause of the reset, it then prescribes the
next step in the recovery process.

External Access

The third Fault Detection/Recovery element needed is the ability to easily construct a
design that completes its own external connection in the event of an operational failure.
Using the low level control already described, the ZFx86 is able to establish the
connection that allows external (and therefore remote) device control using minimal
resources. The BUR extension software can communicate through the serial port
connected to a host system or a modem. Using a modem, the designer can store an
access phone number as part of the recovery code contained in the SEEPROM that can be
used to dial a remote connection to a server or monitoring system for diagnostic
interaction or simple alarm purposes.

THE MINIMALIST ZFX86

In each of the Fault Detection/Recovery phases, the only hardware required, in addition to the
ZFx86, is power, a clock, the SEEPROM, and a connection to the outside world. See Figure 4.

Once you load the new BIOS image that uses the FailSafe recovery mechanism, the designer can
take Fault Detection and Recovery a step further using a significant ZFx86 BIOS feature. This
feature allows the designer to include an O/S loader, the O/S, and an application in the same
Flash as the BIOS. Thus, the ZFx86 limits a significant portion of normal operation to a highly
constrained amount of hardware, inherently providing a highly robust system.

